Learning a Warped Subspace Model of Faces with Images of Unknown Pose and Illumination

نویسندگان

  • Jihun Ham
  • Daniel D. Lee
چکیده

In this paper we tackle the problem of learning the appearances of a person’s face from images with both unknown pose and illumination. The unknown, simultaneous change in pose and illumination makes it difficult to learn 3D face models from data without manual labeling and tracking of features. In comparison, image-based models do not require geometric knowledge of faces but only the statistics of data itself, and therefore are easier to train with images with such variations. We take an image-based approach to the problem and propose a generative model of a warped illumination subspace. Image variations due to illumination change are accounted for by a low-dimensional linear subspace, whereas variations due to pose change are approximated by a geometric warping of images in the subspace. We demonstrate that this model can be efficiently learned via MAP estimation and multiscale registration techniques. With this learned warped subspace we can jointly estimate the pose and the lighting conditions of test images and improve recognition of faces under novel poses and illuminations. We test our algorithm with synthetic faces and real images from the CMU PIE and Yale face databases. The results show improvements in prediction and recognition performance compared to other standard methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pose Invariant Face Recognition Under Arbitrary Unknown Lighting Using Spherical Harmonics

We propose a new method for face recognition under arbitrary pose and illumination conditions, which requires only one training image per subject. Furthermore, no limitation on the pose and illumination conditions for the training image is necessary. Our method combines the strengths of Morphable models to capture the variability of 3D face shape and a spherical harmonic representation for the ...

متن کامل

Analysis and Synthesis of Human Faces with Pose Variations by a Parametric Piecewise Linear Subspace Method

A framework for learning an accurate and general parametric facial model from 2D images is proposed and its application for analyzing and synthesizing facial images with pose variation is demonstrated. Our parametric piecewise linear subspace method covers a wide range of pose variation in a continuous manner through a weighted linear combination of local linear models distributed in a pose par...

متن کامل

Face Recognition under Varying

This thesis considers the problem of recognizing human faces despite variations in illumination, pose and contiguous occlusion, using only frontal training images. In particular, we are interested in simultaneously handling multiple modes of variability in automatic face recognition. We first propose a very simple algorithm, called Nearest-Subspace Patch Matching, which combines a local transla...

متن کامل

An Improved Accuracy Rate for Face Authentication with Pose Adjustment based-on 2D-3D Transformation

In face authentication and other face biometric methods, an image of a person can be misclassified if the pose of their face is different than that of the training data unless there are steps taken to eliminate these inaccuracies. The methods in this paper are designed to improve the accuracy of a face authentication system when the pose between the input image and training images are different...

متن کامل

Camera Pose Estimation in Unknown Environments using a Sequence of Wide-Baseline Monocular Images

In this paper, a feature-based technique for the camera pose estimation in a sequence of wide-baseline images has been proposed. Camera pose estimation is an important issue in many computer vision and robotics applications, such as, augmented reality and visual SLAM. The proposed method can track captured images taken by hand-held camera in room-sized workspaces with maximum scene depth of 3-4...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008